Sistem kontrol kecepatan robot automatic guided vehicle (AGV) dengan metode fuzzy logic

Main Article Content

Rizqy Abdurrahman Budhy Setiawan Indrazno Siradjuddin

Abstract

Autonomatic guided vehicle (AGV) merupakan salah satu jenis robot pengangkut barang yang memiliki roda dan dapat berpindah tempat dengan panduan sensor. Pada saat robot berpindah dibutuhkan kecepatan yang cepat dan akurat, untuk mencapai kecepatan yang konstan. Kecepatan robot akan selalu berubah sesuai dengan lintasan yang dilaluinya. Pengaturan kecepatan agar robot dapat berpindah sesuai dengan kecepatan yang diinginkan atau sesuai dengan set point. Kecepatan berubah – ubah sesuai kondisi seperti pada saat akselerasi lintasan lurus, lintasan berbelok dan pada saat robot akan berhenti. Untuk mencapai target kecepatan yang sesuai maka menggunakan metode fuzzy logic. Metode fuzzy logic adalah metode yang tepat untuk mengontrol kecepatan robot Automatic guided vehicle. Fuzzy logic menggunakan input berupa error dan delta  error. Dengan metode fuzzy logic membuktikan bahwa hasil yang didapat dengan set point 30 cm/s dan 40 cm/s robot AGV dapat berjalan secara dengan respon yang cepat dan menghasilkan tingkat osilasi yang rendah.


Automatic guided vehicle is one type of goods transport robot that has wheels and can move places with sensor guidance. When the robot moves, it needs a fast and accurate speed to achieve a constant speed. The speed of the robot will always change according to the path it passes. Speed regulation so that the robot can move according to the desired speed or according to the set point. Speed changes according to conditions such as when the track acceleration is straight, the track turns and when the robot stops. To achieve the appropriate speed target        then        use        the        fuzzy         logic         method.   To achieve the appropriate speed target then use the fuzzy logic method. Fuzzy logic method is the right method to control the speed of robots Automatic guided vehicle. This method does not need to always adjust the gain when the load changes or when a set point changes. With this method the results can be analyzed that the fuzzy logic method can stabilize the AGV robot speed to the maximum with a range of 30 to 40 rpm. If the speed below or above the set point, there will always be oscillation.

Downloads

Download data is not yet available.

Article Details

How to Cite
ABDURRAHMAN, Rizqy; SETIAWAN, Budhy; SIRADJUDDIN, Indrazno. Sistem kontrol kecepatan robot automatic guided vehicle (AGV) dengan metode fuzzy logic. JURNAL ELTEK, [S.l.], v. 18, n. 1, p. 85-93, apr. 2020. ISSN 2355-0740. Available at: <https://distilat.polinema.ac.id/index.php/eltek/article/view/229>. Date accessed: 05 aug. 2021. doi: https://doi.org/10.33795/eltek.v18i1.229.
Section
Articles

References

[1] Yu, J., Lou, P., Wu, X. Fogg, B.J., “A Dual-core Real-time Embedded System for Vision-based Automated Guided Vehicle” pada IITA International Conference on Control, Automation and Systems Engineering,
IEEE, 207-211, 2009
[2] Židek Kamil, Maxim Vladislav, “Design of high performance multimedia control system for UAV/UGV based on SoC/FPGA Core” pada Procedia Engineering Modelling of Mechanical and Mechatronics Systems, TU Košice, 402-408, 2012
[3] Rizvan Erol, Cenk Sahin, Adil Baykasoglu, Vahit Kaplanoglu, “A multi-agent based approach to dynamic scheduling of machines and automated guided vehicles in manufacturing systems” pada jurnal Applied Soft Computing 12 1720–1732, Elsevier, 2012
Sumber dari prosiding:
[4] Stoianovici Gabriela-Veronica, Bulej Vladimír, Ghionea Adrian, Poppeová Viera. “Mobile robots and simulation - an appropriate tool how to increase the eficiency of their application in production systems”
Proceedings in manufacturing systems, Vol. 6, No. 4, 2011, 267-270, 2011
[5] Arturo G, Oscar R, Monica B, Miguel J. “Multi-robot visual SLAM using a Rao Blackwellized particle filter,Robotics and Automatic Systems “,Volume 58 , Issue 1, Pages 68–80.2010
Sumber dari Skripsi :
[6] Terry Intan N. Bambang Sujanarko, Widyono Hadi “Kontrol Kecepatan Motor DC Berbasis Logika Fuzzy”, Jember Universitas Jember, 2014
[7] Setyabadhi, Galih. Rancang Bangun Robot Pengantar Menu Makanan Dengan Mengikuti Jalur Berdasarkan Prinsip Induktansi. Surabaya. ITS, 2011
Sumber dari buku:
[8] Datasheet Sensor Optocoupler
[9] Datasheet Arduino Nano
[10] Datasheet Driver Motor dc IBT-2
[11] Datasheet Motor DC MY1016Z2