STUDI LITERATUR PENGARUH JENIS KATALIS DAN SUHU REAKSI TERHADAP PROSES PIROLISIS GLISEROL MENJADI AKROLEIN

Akh. Ifan Fitril Fadilah, Heny Dewajani

Abstract


Meningkatnya produksi biodiesel menghasilkan peningkatan gliserol sebagai produk samping sekitar 10% berat gliserol pada industri biodiesel. Gliserol dapat dikonversi menjadi bahan kimia bernilai tinggi seperti acetaldehid, akrolein, formaldehid, dan acetol. Berbagai metode dapat digunakan untuk konversi gliserol antara lain pirolisis dan steam gasifikasi.  Proses pirolisis terjadi reaksi dehidrasi gliserol menghasilkan akrolein atau asetol sebagai produk reaksi utama tergantung kondisi reaksi dan permukaan asam katalis. Akrolein digunakan dalam kedokteran, pengolahan air, industri perminyakan sebagai biosida. Tujuan penelitian ini untuk mempelajari kajian literatur dari beberapa metode yang dapat digunakan untuk mengkonversi gliserol dan menentukan metode terbaik yang digunakan terhadap yield akrolein. Kajian dilakukan dengan membandingkan jenis katalis yang digunakan pada proses pirolisis serta suhu proses yang dilakukan peneliti sebelumnya.  Hasil dari kajian literatur berupa kesimpulan untuk mengetahui kondisi optimal dalam menghasilkan akrolein dari pirolisis gliserol.

Keywords


akrolein, gliserol, katalis, perbandingan

Full Text:

PDF

References


N. Harun, S.Z. Abidin, O.U. Osazuwa, Y.H. Taufiq-Yap, M.T. Azizan., 2019, Hydrogen production from glycerol dry reforming over Ag-promoted Ni/Al2O3, Int. J. Hydrogen Energy. 44 213–225. https://doi.org/10.1016/j.ijhydene.2018.03.093.

Y. Xiao, A. Varma., 2016, Conversion of Glycerol to Hydrocarbon Fuels via Bifunctional Catalysts, ACS Energy Lett. 1 963–968, https://doi.org/10.1021/acsenergylett.6b00421.

I.P. Mudi, A.S. Suryandari, 2020, Studi Pengaruh Rasio Molar Feed Gliserol Terhadap Asam Asetat Terhadap Produk Triasetin Berbasis Simulasi Chemcad, Distilat J. Teknol. Separasi. 6 89–96. https://doi.org/10.33795/distilat.v6i2.113.

databoks, 2020, Produksi Biodiesel 2009-2018 Meningkat 3000 persen, https://databoks.katadata.co.id/datapublish/2020/01/09/produksi-biodiesel-2009-2018-meningkat-3000-persen# (diakses 21 Juni 2020).

I.P. Rosas, J.L. Contreras, J. Salmones, C. Tapia, B. Zeifert, J. Navarrete, T. Vázquez, D.C. García, 2017, Catalytic dehydration of glycerol to akrolein over a catalyst of Pd/LaY zeolite and comparison with the chemical equilibrium, Catalysts. 7 1–29. https://doi.org/10.3390/catal7030073.

O. Muraza, 2019, Peculiarities of glycerol conversion to chemicals over zeolite-based catalysts, Front. Chem. 7 1–11. https://doi.org/10.3389/fchem.2019.00233.

O. Damayanti, Y. Gustanti, A. Roesyadi, 2012, Pembuatan Gliserol Karbonat Dari Gliserol Dengan Katalis Berbasis Nikel, J. Tek. ITS. 1 F30-F33–F33. https://doi.org/10.12962/j23373539.v1i1.471.

I. Pala Rosas, J. Luis Contreras Larios, B. Zeifert, J. Salmones Blásquez, 2019, Catalytic Dehydration of Glycerine to Akrolein, in: Glycerine Prod. Transform. - An Innov. Platf. Sustain. Biorefinery Energy, IntechOpen,: hal. 13. https://doi.org/10.5772/intechopen.85751.

C.J. Jia, Y. Liu, W. Schmidt, A.H. Lu, F. Schüth, 2010, Small-sized HZSM-5 zeolite as highly active catalyst for gas phase dehydration of glycerol to akrolein, J. Catal. 269 71–79. https://doi.org/10.1016/j.jcat.2009.10.017.

A. Ulgen, W.F. Hoelderich, 2011, Conversion of glycerol to akrolein in the presence of WO3/TiO2 catalysts, Appl. Catal. A Gen. 400 34–38. https://doi.org/10.1016/j.apcata.2011.04.005.

X.C. Jiang, C.H. Zhou, R. Tesser, M. Di Serio, D.S. Tong, J.R. Zhang, 2018, Coking of Catalysts in Catalytic Glycerol Dehydration to Akrolein, Ind. Eng. Chem. Res. 57 10736–10753. https://doi.org/10.1021/acs.iecr.8b01776.

L. Shen, H. Yin, A. Wang, Y. Feng, Y. Shen, Z. Wu, T. Jiang, 2012, Liquid phase dehydration of glycerol to akrolein catalyzed by silicotungstic, phosphotungstic, and phosphomolybdic acids, Chem. Eng. J. 180 277–283. https://doi.org/10.1016/j.cej.2011.11.058.

J.A. Cecilia, C. García-Sancho, C.P. Jiménez-Gómez, R. Moreno-Tost, P. Maireles-Torres, 2018, Porous silicon-based catalysts for the dehydration of glycerol to high value-added products, Materials (Basel). 11 1–19. https://doi.org/10.3390/ma11091569.

H. Gan, X. Zhao, B. Song, L. Guo, R. Zhang, C. Chen, J. Chen, W. Zhu, Z. Hou, 2014, Gas phase dehydration of glycerol to akrolein catalyzed by zirconium phosphate, Cuihua Xuebao/Chinese J. Catal. 35 1148–1156. https://doi.org/10.1016/s1872-2067(14)60057-7.

M. Massa, A. Andersson, E. Finocchio, G. Busca, 2013, Gas-phase dehydration of glycerol to akrolein over Al2O 3-, SiO2-, and TiO2-supported Nb- and W-oxide catalysts, J. Catal. 307 170–184. https://doi.org/10.1016/j.jcat.2013.07.022.

K.A. Lee, H.K. Ryoo, B.C. Ma, Y. Kim, 2018, Akrolein production by gas-phase glycerol dehydration using PO4/Nb2O5 catalysts, J. Nanosci. Nanotechnol. 18 1312–1315. https://doi.org/10.1166/jnn.2018.14897.

H. Zhao, C.H. Zhou, L.M. Wu, J.Y. Lou, N. Li, H.M. Yang, D.S. Tong, W.H. Yu, 2013, Catalytic dehydration of glycerol to akrolein over sulfuric acid-activated montmorillonite catalysts, Appl. Clay Sci. 74 154–162. https://doi.org/10.1016/j.clay.2012.09.011.

A.Z. Abidin, R.G. Afandi, H.P.R. Graha, 2016, Synthesis of Akrolein from Glycerol Using FePO4 Catalyst in Liquid Phase Dehydration, J. Eng. Technol. Sci. 48 12–20. https://doi.org/10.5614/j.eng.technol.sci.2016.48.1.2.

C.S. Carriço, F.T. Cruz, M.B. Santos, H.O. Pastore, H.M.C. Andrade, A.J.S. Mascarenhas, 2013, Efficiency of zeolite MCM-22 with different SiO2/Al2O3 molar ratios in gas phase glycerol dehydration to akrolein, Microporous Mesoporous Mater. 181 74–82. https://doi.org/10.1016/j.micromeso.2013.07.020.

T. Laino, C. Tuma, A. Curioni, E. Jochnowitz, S. Stolz, 2011, A revisited picture of the mechanism of glycerol dehydration, J. Phys. Chem. A. 115 3592–3595. https://doi.org/10.1021/jp201078e.




DOI: http://dx.doi.org/10.33795/distilat.v7i2.228

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.