Tessa Audia Linarta, Christyfani Sindhuwati, Hardjono Hardjono


The dehydration process is one of the processes that is often found in natural gas processing plants. TEG (triethylene glycol) is a glycol compound commonly used in natural gas dehydration processes. TEG is used as an absorbent for water absorption which is still contained in natural gas which can cause hydrate and corrosion. This absorption process is carried out at the TEG contactor, the TEG that has been used will be regenerated, if it has been regenerated, the TEG will be used again. The purpose of this research is to estimate the appropriate temperature for the TEG regeneration unit absorption process, because there are many TEG losses in this process. TEG losses occur in the TEG regenerator and are usually caused by the temperature of the reflux condenser which is not quite right, causing the TEG to be evaporated out into the atmosphere with water vapor. Losing the TEG is a problem for critical operations in dehydrated systems. The step used to reduce TEG losses is to heat the temperature of the condenser to 100°C by changing the reboiler temperature from 190°C to 197.3°C.


Absorption, Reflux Condenser, FUG Method, Ms Excel, TEG

Full Text:



Christense, D., L.,(2009) Gas Dehydration (Termodynamic Simulation of the Water/Glycol Mixture), k10-Alborg University Easbjerg.

Effective FMEAs, by Carl S.Carlson,(2012) published by Jhon Wiley & Sons

Sulaiman, M. A., Sindhuwati, C., 2020, Reaktor Equilibrium Chemcad: Studi Kasus Pengaruh Feed Flow Rate dan Temperatur Operasi Terhadap Pembentukan Propil Asetat, Jurnal Teknologi Separasi, Vol.6, No.2, agustus, 297-303.

Handbook of Maintenance Management and Engineering by Mohamed benDaya, published by Springer-Verlag London Limited (2009).

Himmelblau, D.M., & Riggs, J.B. (2004). Basic and Calculations in Chemical Engineering &th Edition,. New Jersey: Prentice Hall.

Nivargi dkk (2005). TEG Contactor for Gas Dehydration, Chemichal Engineering World;40 9;77-80.

Layliyah, C. A. N., Sindhuwati, C., 2020, Simulasi CHEMCAD: Pengaruh Temperatur Bottom Column dan Rate Solvent Dmso terhadap Pemurnian Propil Asetat pada Distilasi Ekstraktif, Jurnal Teknologi Separasi, Vol.6, No.2, Agustus, 283-290.

Rizaldi, R. I., Sindhuwati, C., 2020, Kolom Distilasi: Pengaruh Temperatur terhadap Fraksi Massa Top Product pada Pemisahan Propil Asetat, Jurnal Teknologi Separasi, Vol.6, No.2, Agustus, 130-136.

Smith, J. M., Van Ness, H. C., 2005, Chemical Engineering Thermodynamica Eighth Edition., New York

Geankoplis, C. J., 2003, Transport Processes an Separation Process Principle Fourth Edition ., University of Minnesota

Enggar, H., Sutijan., 2016, Metode Shortcut Fenske Underwood Gilliland (FUG) Termodifisikasi untuk Perancangan Kolom Destilasi pada Destilasi Campuran Azeotrop Tenner ., Universitas Gadjah Mada

Geankoplis, C. J., 2003, Transport Processes an Separation Process Principle Fourth Edition ., University of Minnesota

Ariani, Chalim, A, dkk. 2017. ”Efek Konsentrasi katalis Glisin pada Penangkapan Gas CO2, dengan Larutan Methyldietanolamin (MDEA) Menggunakan Kolom Berpacking”. Prosiding Seminar Nasional Rekayasa Proses Industri Kimia, 1, 2580-6572



  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.